Antimicrob Resist Infect Control
October 2023
Background: Antimicrobial materials or surfaces are advertised as part of infection prevention bundles. However, the efficacy of such antimicrobial surfaces has not been sufficiently investigated in hospitals. In this study, the antimicrobial activity of examination gloves with light-activated antimicrobial properties against Gram-positive microorganisms was investigated modelling real live conditions.
View Article and Find Full Text PDFBackground: The efficacy of ultraviolet C (UV-C) radiation against a broad spectrum of micro-organisms has been demonstrated in several studies, but differences in the specific doses and the extent of microbial reduction were found. Furthermore, the conditions of laboratory tests differ greatly from reality, such that efficacy achieved in tests may not necessarily be assumed in reality. Consequently, it is important to investigate the effectiveness of UV-C in representative field trials.
View Article and Find Full Text PDFAntimicrob Resist Infect Control
July 2023
Background: Admission to a room previously occupied by patients carrying environmentally robust pathogens implies an increased risk of acquiring those pathogens. Therefore, 'No-touch' automated room disinfection systems, including devices based on UV-C irradiation, are discussed to improve terminal cleaning. It is still unclear if clinical isolates of relevant pathogens behave differently under UV-C irradiation compared to laboratory strains used in the approval process of disinfection procedures.
View Article and Find Full Text PDFPigmentation, catalase activity and biofilm formation are virulence factors that cause resistance of to environmental stress factors including disinfectants. In recent years, automatic UV-C room disinfection gained greater importance in enhanced disinfection procedures to improve disinfection success in hospitals. In this study, we evaluated the effect of naturally occurring variations in the expression of virulence factors in clinical isolates on tolerance against UV-C radiation.
View Article and Find Full Text PDFBackground: Various assay methods have been developed to study antimicrobial activity based on contamination of surfaces with different amounts of liquid bacterial suspensions. Since surfaces with frequent hand contact are typically touched in a dry state in clinical settings, these tests may be inappropriate at assessing effectiveness to reduce pathogen transmission.
Aim: To investigate a surface previously confirmed to display antimicrobial activity even after drying of small volumes of bacterial suspension (Egger antimicrobial surfaces: EAS) under conditions modelling dry contamination using a touch-transfer method.