Background: Quantifying plant transpiration via thermal imaging is desirable for applications in agriculture, plant breeding, and plant science. However, thermal imaging under natural non-steady state conditions is currently limited by the difficulty of quantifying thermal properties of leaves, especially specific heat capacity (C). Existing literature offers only rough estimates of C and lacks simple and accurate methods to determine it.
View Article and Find Full Text PDFHuman neural stem cells (hNSCs) possess significant therapeutic potential for the treatment of traumatic brain injury (TBI), a leading cause of global death and disability. Recent pre-clinical studies have shown that hNSCs reduce tissue damage and promote functional recovery through neuroprotective and regenerative signaling and cell replacement. Yet the overall efficacy of hNSCs for TBI indications remains unclear.
View Article and Find Full Text PDFBackground: The pleural cavity represents a unique immunological compartment that can mount inflammatory reactions during infections, after surgery and in chronic immunological diseases. The connection between systemic immune reactions in the blood and local immune reactions in pleural effusions remains unclear. This study provides the first comprehensive immunological characterization of paired blood and pleural effusion samples, utilizing combined cell and cytokine analyses in pediatric patients undergoing cardiac surgery.
View Article and Find Full Text PDFAutistic adolescents and young adults in rural areas face significant challenges in health care transition compared to their urban counterparts. Health care transition, the process of moving from pediatric to adult health care, is crucial for the long-term health outcomes of adolescents and young adults. Previous research indicates rural adolescents and young adults often have greater unmet medical and financial needs, affecting their transition experiences, but there was no study focusing on rural autistic adolescents and young adults' health care transition experiences.
View Article and Find Full Text PDFAlthough blue light is known to produce leaves with high photosynthetic capacity, the role of the blue-adjacent UV-A1 (350-400 nm) in driving leaf photosynthetic acclimation is less studied. Tomato plants were grown under hybrid red and blue (RB; 95/5 μmol m s), as well as four treatments in which RB was supplemented with 50 μmol m s peaking at 365, 385, 410 and 450 nm, respectively. Acclimation to 365-450 nm led to a shallow gradient increase in trait values (i.
View Article and Find Full Text PDF