Publications by authors named "E M Hrabak"

Plants have the capacity to sense and adapt to environmental factors using the phytohormone auxin as a major regulator of tropism and development. Among these responses, gravitropism is essential for plant roots to grow downward in the search for nutrients and water. We discovered a new mutant allele of the auxin efflux transporter PIN2 that revealed that pin2 agravitropic root mutants are conditional and nutrient-sensitive.

View Article and Find Full Text PDF

Whatman FTA Cards are a fast and efficient method for capturing and storing nucleic acids but can be cost-prohibitive for large numbers of samples. We developed a method that substitutes a readily-available cellulose matrix and homemade washing buffer for commercial FTA Cards and FTA Purification Reagent. This method is suitable for long-term storage of DNA from many plant species prior to PCR.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPK) are a major group of calcium-stimulated kinases found in plants and some protists. Many CDPKs are membrane-associated, presumably because of lipid modifications at their amino termini. We investigated the subcellular location and myristoylation of AtCPK5, a member of the Arabidopsis CDPK family.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) are a novel class of signaling molecules that have been broadly implicated in relaying specific calcium-mediated responses to biotic and abiotic stress as well as developmental cues in both plants and protists. Calcium-dependent autophosphorylation has been observed in almost all CDPKs examined, but a physiological role for autophosphorylation has not been demonstrated. To date, only a handful of autophosphorylation sites have been mapped to specific residues within CDPK amino acid sequences.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants.

View Article and Find Full Text PDF