Publications by authors named "E M Honey"

Introduction: Maternally inherited diabetes and deafness (MIDD) is caused by the m.3243A>G pathogenic variant in maternally inherited mitochondrial DNA. Diabetes is prevalent in our setting; however, MIDD is rarely diagnosed.

View Article and Find Full Text PDF

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic condition with complete age-dependent penetrance, variable expressivity and a global prevalence of ∼1/3,000. It is characteriszed by numerous café-au-lait macules, skin freckling in the inguinal or axillary regions, Lisch nodules of the iris, optic gliomas, neurofibromas, and tumour predisposition. The diagnostic testing strategy for NF1 includes testing for DNA single nucleotide variants (SNVs), copy number variants (CNVs) as well as RNA analysis for deep intronic and splice variants, which can cumulatively identify the causative variant in 95% of patients.

View Article and Find Full Text PDF

Background: Cornelia de Lange Syndrome (CdLS) presents with a variable multi-systemic phenotype and pathogenic variants have been identified in five main genes. This condition has been understudied in African populations with little phenotypic and molecular information available.

Methods And Results: We present a cohort of 14 patients with clinical features suggestive of CdLS.

View Article and Find Full Text PDF

Timely and accurate diagnosis of rare genetic disorders is critical, as it enables improved patient management and prognosis. In a resource-constrained environment such as the South African State healthcare system, the challenge is to design appropriate and cost-effective assays that will enable accurate genetic diagnostic services in patients of African ancestry across a broad disease spectrum. Next-generation sequencing (NGS) has transformed testing approaches for many Mendelian disorders, but this technology is still relatively new in our setting and requires cost-effective ways to implement.

View Article and Find Full Text PDF