Publications by authors named "E M Frins"

Differential optical absorption spectroscopy (DOAS) is notably well suited for the retrieval of UV-absorbing trace gases present in the atmosphere. We combine multi-axis DOAS observations to perform a tomographic reconstruction of the distribution of gases emitted from different sources. We use a new algorithm based on a regularized minimization approach embedding key physical aspects of the solution to constrain the inversion.

View Article and Find Full Text PDF

We describe a robust interferometer with external phase-shift control that does not require moving parts. The optical architecture resembles a common-path device in which the interfering waves propagate together in one collimated beam passing through the test sample. The collimated beam is incident on a calcite plate, which produces a polarization selective lateral translation and superposition of the reference and test waves.

View Article and Find Full Text PDF

Polarization analyzers are an essential measuring tool to improve the characteristics of optical components and optimize them with respect to a useful application in optical networks. We describe an instrument of this kind, which consists of two crossed birefringent wedges and acts as a continuous structured polarizer for all the states of polarization of light. We analyze this device theoretically by using the Poincaré-sphere and the Jones-matrix method and verify our results in a number of experiments with quartz wedges and red filtered light.

View Article and Find Full Text PDF

Avalanche diodes (ADs) are widely used to count photons in quantum interferometry. In reality they do not count photons, but click once when a bunch of photons arrives in a light pulse. We model this behavior in typical quantum optical interferometers like the Hong-Ou-Mandel beam splitter and the Mach-Zehnder interferometer, and compare it with the behavior of the photon-number-resolving (PNR) detector and the Hanbury-Brown-Twiss detector in these measuring devices.

View Article and Find Full Text PDF

Experimental results showing "negative refraction" and some kind of "lensing" -in the microwave-infrared range- are often presented in the literature as undisputable evidence of the existence of composite left-handed materials. The purpose of this paper is to present experimental results on "negative refraction" and "lensing" at visible wavelengths involving a waveguide array formed by a tight-packed bundle of glass fibers. We will demonstrate that the observed phenomena are not necessarily evidence of the existence of left-handed materials and that they can be fully explained by classical optic concepts, e.

View Article and Find Full Text PDF