Publications by authors named "E M El-Zairy"

In this work, multifunctional linen cellulose fabrics were facilely developed by using an eco-friendly finishing formulations and the pad-dry/microwave fixation technique. Both reactant resin and citric acid have been employed as low- and zero-formaldehyde crosslinkers along with their proper catalyzing agents. Individual incorporation of ascorbic acid and selected phenolic compounds namely salicylic acid, resorcinol, and gallic acid, as natural active ingredient (AI-OH) along with PEG-400 or modified nonionic silicone-softener in ether- or ester-crosslinking formulation and their impacts on the performance, functional properties and degree of coloration of the finished fabrics were investigated.

View Article and Find Full Text PDF

This study focused on upgrading the antibacterial activity, UV-protection property, self-cleaning ability and durability to wash of linen and linen/cotton (50/50) blend fabrics to develop multifunctional textile materials without adversely affecting their hydrophilicity. Herein, linen-containing fabrics were first pre-carboxymethylated to create new active sites (-CHCOOH groups) to facilitate subsequent loading of selected active ingredients namely chitosan (Cs), organosilane quaternary ammonium compound (Si-QAC), silver-nanoparticles (Ag-NPs) and titanium oxide nanoparticles (TiO-NPs) individually and in admixtures. The developed products, especially in case of using mixed active ingredients, exhibit a noticeable improvement in the imparted functional properties regardless of the used substrate.

View Article and Find Full Text PDF

This research work focuses on the development of a one-bath functional finishing procedure for imparting durable multifunctional properties such as easy care, soft-hand, antibacterial and/or ultra violet (UV) protection to cotton/wool and viscose/wool blends using diverse finishing combinations and formulations. In this study finishing agents such as reactant resin, silicon softeners, 4-hydroxybenzophenone, triclosan, and pigment colorant were selected using magnesium chloride/citric acid as a mixed catalyst and the pad-dry microwave fixation technique. The results reveal that enhancement in the imparted functional properties are governed by type of the finished substrate as well as nature and concentration of finishing formulation components.

View Article and Find Full Text PDF

The present innovative research work deals with the individual use of chitosan (2.5 g/kg), Aloe vera (10 g/kg), triclosan (10 g/kg), TiO2-nanoparticles (TiO2-NP's, 10 g/kg), silicon micro-emulsion (20 g/kg) or a water/oil-repellent agent (40 g/kg) for modifying the pigment print paste to produce functionalized cotton/wool and viscose/wool pigment prints in one step process. The imparted functional properties such as antibacterial, antibacterial/UV-protection, soft-handle or water/oil-repellency together with the change in the printing properties were evaluated.

View Article and Find Full Text PDF

Monochloro-triazine β-cyclodextrin (MCT-βCD) was successfully utilized to modify the wool fabric structure. The modified wool exhibited better post-printing, using different dyestuffs, and outstanding antibacterial activities most probably due to the remarkable capacity of grafted βCD moieties to form guest-host inclusion complexes in addition to the positive role of wool's active sites. The following treatment sequence: pre-modification, post-printing, followed by after-treatment with Ag-NP's colloid or triclosan derivatives was investigated.

View Article and Find Full Text PDF