As the first responder to immunological challenges, the innate immune system shapes and regulates the ensuing adaptive immune response. Many clinical studies evaluating the role of innate immunity in initiating vaccine-elicited adaptive immune responses have largely been confined to blood due to inherent difficulty in acquiring tissue samples. However, the absence of vaccine-site and draining lymph node information limits understanding of early events induced by vaccination that could potentially shape vaccine-elicited immunity.
View Article and Find Full Text PDFClin Cancer Res
July 2022
To explore the lower efficacy of adoptive cell transfer (ACT) therapy in patients with anti-PD-1 experienced melanoma, tumor mutational burden (TMB), predicted neoantigen frequencies, and tumor-infiltrating lymphocyte (TIL) neoantigen reactivity were assessed. Reduced neoantigen-specific TIL frequencies correlated with lower ACT response even in patients with similar TMB, suggesting a potentially harmful effect of PD-1 inhibition on T-cell outgrowth. See related article by Levi et al.
View Article and Find Full Text PDFNK cell suppression of T cells is a key determinant of viral pathogenesis and vaccine efficacy. This process involves perforin-dependent elimination of activated CD4+ T cells during the first 3 days of infection. Although this mechanism requires cell-cell contact, NK cells and T cells typically reside in different compartments of lymphoid tissues at steady state.
View Article and Find Full Text PDFNat Rev Clin Oncol
April 2021
Within the past decade, the field of immunotherapy has revolutionized the treatment of many cancers with the development and regulatory approval of various immune-checkpoint inhibitors and chimeric antigen receptor T cell therapies in diverse indications. Another promising approach to cancer immunotherapy involves the use of personalized vaccines designed to trigger de novo T cell responses against neoantigens, which are highly specific to tumours of individual patients, in order to amplify and broaden the endogenous repertoire of tumour-specific T cells. Results from initial clinical studies of personalized neoantigen-based vaccines, enabled by the availability of rapid and cost-effective sequencing and bioinformatics technologies, have demonstrated robust tumour-specific immunogenicity and preliminary evidence of antitumour activity in patients with melanoma and other cancers.
View Article and Find Full Text PDFBacille Calmette-Guerin (BCG), an attenuated whole cell vaccine based on Mycobacterium bovis, is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), but its efficacy is suboptimal and it fails to protect against pulmonary tuberculosis. We previously reported that Mtb lacking the virulence genes lprG and rv1410c (ΔLprG) was highly attenuated in immune deficient mice. In this study, we show that attenuated ΔLprG Mtb protects C57BL/6J, Balb/cJ, and C3HeB/FeJ mice against Mtb challenge and is as attenuated as BCG in SCID mice.
View Article and Find Full Text PDF