Publications by authors named "E Lynn Zechiedrich"

Topoisomerases may unknot by recognizing specific DNA juxtapositions. The physical basis of this hypothesis is investigated by considering single-loop conformations in a coarse-grained polymer model. We determine the statistical relationship between the local geometry of a juxtaposition of two chain segments and whether the loop is knotted globally, and ascertain how the knot/unknot topology is altered by a topoisomerase-like segment passage at the juxtaposition.

View Article and Find Full Text PDF

Using λ-Int recombination in E. coli, we have generated milligram quantities of supercoiled minicircle DNA. Intramolecular Int recombination was efficient down to lengths ~254 bp.

View Article and Find Full Text PDF

Type II topoisomerases resolve problematic DNA topologies such as knots, catenanes, and supercoils that arise as a consequence of DNA replication and recombination. Failure to remove problematic DNA topologies prohibits cell division and can result in cell death or genetic mutation. Such catastrophic consequences make topoisomerases an effective target for antibiotics and anticancer agents.

View Article and Find Full Text PDF

Lattice modeling is applied to investigate how the configurations of local chain juxtapositions may provide information about whether two ring polymers (loops) are topologically linked globally. Given a particular juxtaposition, the conditional probability that the loops are linked is determined by exact enumeration and extensive Monte Carlo sampling of conformations satisfying excluded volume constraints. A discrimination factor fL, defined as the ratio of linked to unlinked probabilities, varies widely depending on which juxtaposition is presumed.

View Article and Find Full Text PDF

Previously, we found that the quorum sensing transcription factor SdiA up-regulates AcrAB. Others found that a 4-quinolone was a quorum-sensing signal in Pseudomonas aeruginosa. In Escherichia coli, there are at least three multidrug transporters (AcrAB/TolC, MdfA, and NorE) that exude fluoroquinolones.

View Article and Find Full Text PDF