Cancer immunotherapy has emerged in the past decade as a promising strategy for treating many forms of cancer by stimulating the patient's immune system. Although immunotherapy has achieved some promising results in clinics, more efforts are required to improve the limitations of current treatments related to lack of effective and targeted cancer antigens delivery to immune cells, dose-limiting toxicity, and immune-mediated adverse effects, among others. In recent years, the use of nanomaterials has proven promising to enhance cancer immunotherapy efficacy and reduce side effects.
View Article and Find Full Text PDFThis work describes the assembly of a novel enzyme-controlled nanomachine operated through an AND Boolean logic gate for on-command delivery. The nanodevice was constructed on Au-mesoporous silica Janus nanoparticles capped with a thiol-sensitive gate-like molecular ensemble on the mesoporous face and functionalized with glutathione reductase on the gold face. This autonomous nanomachine employed NADPH and glutathione disulfide as input chemical signals, leading to the enzymatic production of reduced glutathione that causes the disruption of the gating mechanism on the mesoporous face and the consequent payload release as an output signal.
View Article and Find Full Text PDFGeochemical fingerprinting is a rapidly expanding discipline in the earth and environmental sciences, anchored in the recognition that geological processes leave behind physical, chemical and sometimes also isotopic patterns in the samples. Furthermore, the geochemical fingerprinting of natural cycles (water, carbon, soil and biota fingerprinting) are influenced by the anthropogenic impact and by the climate change. So, their monitoring is a tool of resilience and adaptation.
View Article and Find Full Text PDFDevelopment of bioinspired nanomachines with an efficient propulsion and cargo-towing has attracted much attention in the last years due to their potential biosensing, diagnostics, and therapeutics applications. In this context, self-propelled synthetic nanomotors are promising carriers for intelligent and controlled release of therapeutic payloads. However, the implementation of this technology in real biomedical applications is still facing several challenges.
View Article and Find Full Text PDFHere we report functional stimulus-responsive nanomotors based on Janus Au-mesoporous silica nanoparticles capable of self-propelling via the biocatalytic conversion of chemical fuel, that read information from the environment (the presence of glutathione) and accordingly deliver a cargo.
View Article and Find Full Text PDF