Publications by authors named "E Lopez-Juez"

Chloroplast activities influence nuclear gene expression, a phenomenon referred to as retrograde signaling. Biogenic retrograde signals have been revealed by changes in nuclear gene expression when chloroplast development is disrupted. Research on biogenic signaling has focused on repression of Photosynthesis-Associated Nuclear Genes (PhANGs), but this is just one component of a syndrome involving altered expression of thousands of genes involved in diverse processes, many of which are upregulated.

View Article and Find Full Text PDF

Chloroplast biogenesis requires synthesis of proteins in the nucleocytoplasm and the chloroplast itself. Nucleus-encoded chloroplast proteins are imported via multiprotein translocons in the organelle's envelope membranes. Controversy exists around whether a 1-MDa complex comprising TIC20, TIC100, and other proteins constitutes the inner membrane TIC translocon.

View Article and Find Full Text PDF

Chloroplasts are best known for their role in photosynthesis, but they also allow nitrogen and sulphur assimilation, amino acid, fatty acid, nucleotide and hormone synthesis. How chloroplasts develop is therefore relevant to these diverse and fundamental biological processes, but also to attempts at their rational redesign. Light is strictly required for chloroplast formation in all angiosperms and directly regulates the expression of hundreds of chloroplast-related genes.

View Article and Find Full Text PDF

Background: The developmental gradient in monocot leaves has been exploited to uncover leaf developmental gene expression programs and chloroplast biogenesis processes. However, the relationship between the two is barely understood, which limits the value of transcriptome data to understand the process of chloroplast development.

Results: Taking advantage of the developmental gradient in the bread wheat leaf, we provide a simultaneous quantitative analysis for the development of mesophyll cells and of chloroplasts as a cellular compartment.

View Article and Find Full Text PDF