The subthalamic nucleus (STN) is pivotal in basal ganglia function in health and disease. Micro-electrode recordings of >25,000 recording sites from 146 Parkinson's patients undergoing deep brain stimulation (DBS) allowed differentiation between subthalamic input, represented by local field potential (LFP), and output, reflected in spike discharge rate (SPK). As with many natural systems, STN neuronal activity exhibits power-law dynamics characterized by the exponent α.
View Article and Find Full Text PDFIndividuals with Parkinson's disease (PD) may exhibit impaired emotion perception. However, research demonstrating this decline has been based almost entirely on the recognition of isolated emotional cues. In real life, emotional cues such as expressive faces are typically encountered alongside expressive bodies.
View Article and Find Full Text PDFBackground: It is unknown whether Parkinson's disease (PD) genetic heterogeneity, leading to phenotypic and pathological variability, is also associated with variability in the unique PD electrophysiological signature. Such variability might have practical implications for adaptive deep brain stimulation (DBS).
Objective: The aim of our work was to study the electrophysiological activity in the subthalamic nucleus (STN) of patients with PD with pathogenic variants in different disease-causing genes.