Breast cancer (BC) is the most common cancer in women, with metastatic BC being responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and tumor-stroma interactions.
View Article and Find Full Text PDFThe tight junction membrane protein claudin 1 and the adherens junction protein E-cadherin play critical roles in cell-cell communication and in cell signaling. As a result, their protein levels and distribution in cancer have been a focus of cancer researchers in recent years. The loss of sensitivity to contact inhibition and the establishment of invasive properties in cancer are thought to be a result of the mislocalization of these membrane proteins to the cytoplasm.
View Article and Find Full Text PDFThe tumor microenvironment plays a pivotal role in the tumorigenesis, progression, and metastatic spread of many cancers including breast. There is now increasing evidence to support the observations that a bidirectional interplay between breast cancer cells and stromal cells exists within the tumor and the tumor microenvironment both at the primary tumor site and at the metastatic site. This interaction occurs through direct cell to cell contact, or by the release of autocrine or paracrine factors which can activate pro-tumor signaling pathways and modulate tumor behavior.
View Article and Find Full Text PDFProlactin-inducible protein (PIP) is a multifunctional glycoprotein that is highly expressed and found in the secretions of apocrine glands such as salivary, lacrimal, and sweat glands including the mammary glands. PIP has been implicated in various diseases, including breast cancer, gross cystic disease of the breast, keratoconus of the eye, and the autoimmune Sjögren's syndrome. Here we have generated a knockout (KO) mouse using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRSPR-associated (Cas)9 system.
View Article and Find Full Text PDFRecent studies provide compelling evidence to suggest that the tight junction protein claudin 1, aberrantly expressed in several cancer types, plays an important role in cancer progression. Dysregulation of claudin 1 has been shown to induce epithelial mesenchymal transition (EMT). Furthermore, activation of the ERK signaling pathway by protein kinase C (PKC) was shown to be necessary for EMT induction.
View Article and Find Full Text PDF