Publications by authors named "E Lebrun"

Omics-based measurements enable the study of biomolecules in a high-throughput fashion, leading to the characterization and quantification of biological systems. Multi-omics methods aim to incorporate several omics measurements for a more holistic approach, which is crucial for advancing our understanding of the diversity and redundancy of biological systems. Current multi-omics sample preparation methods have achieved proteomics, lipidomics, and metabolomics from individual samples; however, the bioinformatic tools currently available for interpreting data generated from these omics are limited.

View Article and Find Full Text PDF

Although classical molecular biology assays can provide a measure of cellular response to chemical challenges, they rely on a single biological phenomenon to infer a broader measure of cellular metabolic response. These methods do not always afford the necessary sensitivity to answer questions of subcytotoxic effects, nor do they work for all cell types. Likewise, boutique assays such as cardiomyocyte beat rate may indirectly measure cellular metabolic response, but they too, are limited to measuring a specific biological phenomenon and are often limited to a single cell type.

View Article and Find Full Text PDF

Field-forward analytical technologies, such as portable mass spectrometry (MS), enable essential capabilities for real-time monitoring and point-of-care diagnostic applications. Significant and recent investments improving the features of miniaturized mass spectrometers enable various new applications outside of small molecule detection. Most notably, the addition of tandem mass spectrometry scans (MS/MS) allows the instrument to isolate and fragment ions and increase the analytical specificity by measuring unique chemical signatures for ions of interest.

View Article and Find Full Text PDF
Article Synopsis
  • The analysis of human breath for clinical applications has been hindered by factors like sampling methods, human variability, and other health conditions.
  • To address this, researchers created an averaged 'healthy human profile' for breath samples to enable comparison across different studies.
  • Using high-resolution mass spectrometry and robust statistical methods, they identified key differences in breath features related to time of day, participant demographics, and found specific signals linked to age and sex.
View Article and Find Full Text PDF

The search for new antibodies is a major field of pharmaceutical research that remains lengthy and costly due to the need for successive library screenings. Existing and antibody discovery processes require that libraries are repeatedly subcloned to switch the antibody format or the secretory host, a resource-intensive process. There is an urgent need for an antibody identification platform capable of screening large antibody libraries in their final soluble format.

View Article and Find Full Text PDF