Ozone is a highly reactive environmental pollutant with well-recognized adverse effects on lung health. Bronchial hyperresponsiveness (BHR) is one consequence of ozone exposure, particularly for individuals with underlying lung disease. Our data demonstrated that ozone induced substantial ATP release from human airway epithelia in vitro and into the airways of mice in vivo and that ATP served as a potent inducer of mast cell degranulation and BHR, acting through P2X7 receptors on mast cells.
View Article and Find Full Text PDFMucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB).
View Article and Find Full Text PDFPannexin 1 (Panx1) channels export ATP and may contribute to increased concentration of the vasodilator ATP in plasma during hypoxia in vivo. We hypothesized that Panx1 channels and associated ATP export contribute to hypoxic vasodilation, a mechanism that facilitates the matching of oxygen delivery to metabolic demand of tissue. Male and female mice devoid of Panx1 () and wild-type controls (WT) were anesthetized, mechanically ventilated, and instrumented with a carotid artery catheter or femoral artery flow transducer for hemodynamic and plasma ATP monitoring during inhalation of 21% (normoxia) or 10% oxygen (hypoxia).
View Article and Find Full Text PDF