Background: Brain tissue is selectively enriched with highly unsaturated fatty acids (FAs). Altering the maternal FA status in pregnancy may improve fetal neural development with lasting consequences for child development.
Objective: We explored whether maternal FAs in erythrocytes, either measured directly or indirectly by maternal FADS genetic variants, are associated with child intelligence quotient (IQ).
There is growing evidence that early nutrition affects later cognitive performance. The idea that the diet of mothers, infants, and children could affect later mental performance has major implications for public health practice and policy development and for our understanding of human biology as well as for food product development, economic progress, and future wealth creation. To date, however, much of the evidence is from animal, retrospective studies and short-term nutritional intervention studies in humans.
View Article and Find Full Text PDFObjective: The interplay of genetic and nutritional regulation of the insulin-like growth factor-I axis in children is unclear. Therefore, potential gene-nutrient effects on serum levels of the IGF-I axis in a formula feeding trial were studied.
Design: European multicenter randomized clinical trial of 1090 term, formula-fed infants assigned to receive cow's milk-based infant and follow-on formulae with lower (LP: 1.
Environmental factors such as tobacco smoking may have long-lasting effects on DNA methylation patterns, which might lead to changes in gene expression and in a broader context to the development or progression of various diseases. We conducted an epigenome-wide association study (EWAs) comparing current, former and never smokers from 1793 participants of the population-based KORA F4 panel, with replication in 479 participants from the KORA F3 panel, carried out by the 450K BeadChip with genomic DNA obtained from whole blood. We observed wide-spread differences in the degree of site-specific methylation (with p-values ranging from 9.
View Article and Find Full Text PDFElevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry.
View Article and Find Full Text PDF