Publications by authors named "E LOEFFLER"

Unlabelled: Enterocolitis is a common and potentially deadly manifestation of Hirschsprung disease (HSCR) but disease mechanisms remain poorly defined. Unexpectedly, we discovered that diet can dramatically affect the lifespan of a HSCR mouse model ( , ) where affected animals die from HAEC complications. In the model, diet alters gut microbes and metabolites, leading to changes in colon epithelial gene expression and epithelial oxygen levels known to influence colitis severity.

View Article and Find Full Text PDF

The tumor suppressor fragile histidine triad (FHIT) is frequently lost in non-small cell lung cancer (NSCLC). We previously showed that a down-regulation of FHIT causes an up-regulation of the activity of HER2 associated to an epithelial-mesenchymal transition (EMT) and that lung tumor cells harboring a FHIT/pHER2 phenotype are sensitive to anti-HER2 drugs. Here, we sought to decipher the FHIT-regulated HER2 signaling pathway in NSCLC.

View Article and Find Full Text PDF

Lung cancer stands as the first cause of death by cancer in the world. Despite the improvement in patients' outcomes in the past decades through the development of personalized medicine approaches, a substantial portion of patients remains ineligible for targeted therapies due to the lack of a "druggable" molecular target. HER2, a receptor tyrosine kinase member of the EGFR/ErbB family, is known to show oncogenic properties.

View Article and Find Full Text PDF

Introduction: In recent decades, the development of immunotherapy and targeted therapies has considerably improved the outcome of non-small cell lung cancer (NSCLC) patients. Despite these impressive clinical benefits, new biomarkers are needed for an accurate stratification of NSCLC patients and a more personalized management. We recently showed that the tumor suppressor fragile histidine triad (FHIT), frequently lost in NSCLC, controls HER2 receptor activity in lung tumor cells and that tumor cells from NSCLC patients harboring a FHIT/pHER2 phenotype are sensitive to anti-HER2 drugs.

View Article and Find Full Text PDF

S100A1 is a Ca2+-binding protein of the EF-hand type that belongs to the S100 protein family. It is specifically expressed in the myocardium at high levels and is considered to be an important regulator of cardiac contractility. Because the S100A1 protein is released into the extracellular space during ischemic myocardial injury, we examined the cardioprotective potential of the extracellular S100A1 protein on ventricular cardiomyocytes in vitro.

View Article and Find Full Text PDF