Objective: to study the effectiveness of methods of endovascular treatment of May-Turner syndrome and nutcracker syndrome as a cause of varicose veins of the pelvis in men with chronic pelvic pain syndrome.
Materials And Methods: a comprehensive examination was carried out in 445 men with chronic pelvic pain syndrome. The patients age ranged from 20 to 68 years (mean age 39.
Flow coefficients v_{n} of the orders n=1-6 are measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI for protons, deuterons, and tritons as a function of centrality, transverse momentum, and rapidity in Au+Au collisions at sqrt[s_{NN}]=2.4 GeV. Combining the information from the flow coefficients of all orders allows us to construct for the first time, at collision energies of a few GeV, a multidifferential picture of the angular emission pattern of these particles.
View Article and Find Full Text PDFEffect of Zn(2+) ions on the conformation of single-stranded polynucleotides polyU and polyC in a wide temperature range at pH 7 was studied by differential UV spectroscopy and by thermal denaturation. The atoms coordinating Zn(2+) ions were determined (O4 and N3 in polyU and N3 in polyC). A three-dimensional phase diagram and its two-dimensional components were constructed for a polyC-Zn(2+) system.
View Article and Find Full Text PDFMetallization of single-stranded polyinosinic acid (polyI) by Zn(2+) ions at pH 7.0 was studied by differential UV spectroscopy at different temperatures. It was found that polyI is metallized at N7 and N1 atoms of hypoxanthine.
View Article and Find Full Text PDFEffect of Zn(2+) ions on the conformation of polyA in cacodilic buffer at pH 7 was investigated by differential UV spectroscopy (DUV) and by thermal denaturation. The shapes of the DUV spectra and melting curves suggest a transition of polyA into a more ordered "metallized", possibly double-helical conformation at Zn(2+) concentrations above 3×10(-5) M. A phase diagram of polyA complexes with Zn(2+) was constructed for the temperature range from 20 °C to 95 °C and Zn(2+) concentrations between 10(-5) M and 5×10(-4) M.
View Article and Find Full Text PDF