Background: Type II DNA topoisomerases (topos) are essential enzymes needed for the resolution of topological problems that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one double helix is passed through a transient break in another. Humans have two topoII isoforms, alpha and beta, which while enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles.
View Article and Find Full Text PDFNumerous clinical or experimental studies have employed monoclonal antibody CP9/19 for quantification of cisplatin DNA adducts. The nature of adducts recognised by CP9/19 on polymeric DNA were defined using synthetic deoxynucleotides reacted with cisplatin. Total adduct levels were determined by atomic absorption spectrometry.
View Article and Find Full Text PDFThe growth inhibitory effects of cisplatin and etoposide on neuroblastoma cell lines were investigated in several scheduled combinations. Results were analyzed using median effect and combination index analyses. In all schedules in which cisplatin was administered prior to etoposide a synergistic effect was observed.
View Article and Find Full Text PDFA type II topoisomerase is essential for decatenating DNA replication products, and it accomplishes this task by passing one DNA duplex through a transient break in a second duplex. The B' domain of topoisomerase II contains three highly conserved motifs, EGDSA, PL(R/K)GK(I/L/M)LNVR, and IMTD(Q/A)DXD. We have investigated these motifs in topoisomerase II beta by mutagenesis, and report that they play a critical role in establishing the DNA cleavage-religation equilibrium.
View Article and Find Full Text PDF