Publications by authors named "E L Makowski"

Article Synopsis
  • Antibody variable regions are responsible for binding to specific antigens, but they can also interact non-specifically, affecting the performance of antibody therapeutics in various ways.
  • Researchers analyzed over 300,000 antibody sequences to find that the heavy chain mainly determines non-specific interactions due to its properties, such as positive charge and hydrophobicity, which can be assessed using a machine learning model.
  • The study identifies key features, particularly those involving tyrosine, that influence both non-specific binding and specific antigen recognition, providing insights for antibody design and understanding molecular immunology.
View Article and Find Full Text PDF

Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions.

View Article and Find Full Text PDF

Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition.

View Article and Find Full Text PDF

Single-domain antibodies, also known as nanobodies, are broadly important for studying the structure and conformational states of several classes of proteins, including membrane proteins, enzymes, and amyloidogenic proteins. Conformational nanobodies specific for aggregated conformations of amyloidogenic proteins are particularly needed to better target and study aggregates associated with a growing class of associated diseases, especially neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. However, there are few reported nanobodies with both conformational and sequence specificity for amyloid aggregates, especially for large and complex proteins such as the tau protein associated with Alzheimer's disease, due to difficulties in selecting nanobodies that bind to complex aggregated proteins.

View Article and Find Full Text PDF