To bypass DNA damage, cells have Y-Family DNA polymerases (DNAPs). One Y-Family-class includes DNAP κ and DNAP IV, which accurately insert dCTP opposite N(2)-dG adducts, including from the carcinogen benzo[a]pyrene (BP). Another class includes DNAP η and DNAP V, which insert accurately opposite UV-damage, but inaccurately opposite BP-N(2)-dG.
View Article and Find Full Text PDFQuantitating relative (32)P-band intensity in gels is desired, e.g., to study primer-extension kinetics of DNA polymerases (DNAPs).
View Article and Find Full Text PDFTo synthesize past DNA damaged by chemicals or radiation, cells have lesion bypass DNA polymerases (DNAPs), most of which are in the Y-Family. One class of Y-Family DNAPs includes DNAP η in eukaryotes and DNAP V in bacteria, which have low fidelity when replicating undamaged DNA. In Escherchia coli, DNAP V is carefully regulated to insure it is active for lesion bypass only, and one mode of regulation involves interaction of the polymerase subunit (UmuC) and two regulatory subunits (UmuD') with a RecA-filament bound to ss-DNA.
View Article and Find Full Text PDF