The aim of this study was to determine whether bisphenol A (BPA) has adverse effects on cardiovascular functions in CD-1 mice and define sex-specific modes of BPA action in the heart. Dams and analyzed progeny were maintained on a defined diet containing BPA (0.03, 0.
View Article and Find Full Text PDFBisphenol A (BPA) is an endocrine disrupting chemical that is ubiquitous in wild and built environments. Due to variability in study design, the disruptive effects of BPA have proven difficult to experimentally replicate. This study was designed to assess the disruptive actions of dietary BPA exposure, while carefully controlling for known confounders.
View Article and Find Full Text PDFPyometra is an inflammatory disease of the uterus that can be caused by chronic exposure to estrogens. It is unknown whether weakly estrogenic endocrine disruptors can cause pyometra. We investigated whether dietary exposures to the estrogenic endocrine disruptor bisphenol A (BPA) induced pyometra.
View Article and Find Full Text PDFIn humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis.
View Article and Find Full Text PDF