Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no definitive strategies for their prevention and treatment due to a limited understanding of the cellular and molecular mechanisms contributing to lesion development. One disease in which the development of heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy (AHO).
View Article and Find Full Text PDFBackground: Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivating mutations in GNAS. Patients with maternally-inherited mutations develop pseudohypoparathyroidism type 1A (PHP1A) with multi-hormone resistance and aberrant craniofacial and skeletal development among other abnormalities. Chiari malformation type 1 (CM1), a condition in which brain tissue extends into the spinal canal when the skull is too small, has been reported in isolated cases of PHP1A.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress contributes to pancreatic beta-cell apoptosis in diabetes, but the factors involved are still not fully elucidated. Growth differentiation factor 15 (GDF15) is a stress response gene and has been reported to be increased and play an important role in various diseases. However, the role of GDF15 in beta cells in the context of ER stress and diabetes is still unclear.
View Article and Find Full Text PDFBackground: Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression.
View Article and Find Full Text PDFPurpose Of Review: This review highlights the impact of Gnas inactivation on both bone remodeling and the development of heterotopic subcutaneous ossifications in Albright hereditary osteodystrophy (AHO). Here we discuss recent advancements in understanding the pathophysiologic mechanisms of the aberrant bone development in AHO as well as potential translational implications.
Recent Findings: Gnas inactivation can regulate the differentiation and function of not only osteoblasts but also osteoclasts and osteocytes.