Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria. Because of its unique physiological and biochemical properties, it serves as a potential target for development of novel antibacterial agents. In this study, we report the production, isolation, and structure determination of a family of structurally related novel lipoglycopeptides from a Streptomyces sp.
View Article and Find Full Text PDFWe have previously demonstrated that Streptococcus pneumoniae signal peptidase (SPase) I catalyzes a self-cleavage to result in a truncated product, SPase37-204 [Peng, S.B., Wang, L.
View Article and Find Full Text PDFSignal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria and serves as a potential target for the development of novel antibacterial agents due to its unique physiological and biochemical properties. In this paper, we describe a novel fluorogenic substrate, KLTFGTVK(Abz)PVQAIAGY(NO2)EWL, in which 2-aminobenzoic acid (Abz) and 3-nitrotyrosine (Y(NO2)) were used as the fluorescent donor and acceptor, respectively. The substrate can be cleaved by both Streptococcus pneumoniae and Escherichia coli SPase I.
View Article and Find Full Text PDFA biochemical approach was used to identify proteins which interact with human BRCA1. Through this work, a kinase activity which co-purifies with BRCA1 has been identified. This kinase activity, which phosphorylates BRCA1 in vitro, was originally identified in Sf9 insect cells but is also present in cells of human origin including breast and ovarian carcinoma cell lines.
View Article and Find Full Text PDFThe crystal structure of a recombinant form of the proteinase encoded by the feline immunodeficiency virus (FIV PR) has been solved at 2 A resolution and refined to an R-factor of 0.148. The refined structure includes a peptidomimetic, statine-based inhibitor, LP-149, which is an even more potent inhibitor of HIV PR.
View Article and Find Full Text PDF