Neoplasia in the rodent Harderian gland has been used to determine the carcinogenic potential of irradiation by HZE particles. Ions from protons to lanthanum at energies up to 670 MeV/a have been used to irradiate mice, and prevalence of Harderian gland tumors has been measured 16 months after irradiation. The RBE for tumor induction has been expressed as the RBEmax, which is the ratio of the initial slopes of the dose vs prevalence curve.
View Article and Find Full Text PDFLenses of mice irradiated with 250 MeV protons, 670 MeV/amu 20Ne, 600 MeV/amu 56Fe, 600 MeV/amu 93Nb and 593 MeV/amu 139La ions were evaluated by analyzing cytopathological indicators which have been implicated in the cataractogenic process. The LETs ranged from 0.40 keV/micrometer to 953 keV/micrometer and fluences from 1.
View Article and Find Full Text PDFThe potential for radiogenic neoplasia from charged-particle irradiation has been estimated using the Harderian gland of the mouse as a test system. Particles ranging in Z from Z = 1 (proton) to Z = 41 (niobium), in energy from 228 to 670A MeV, and in LET from 0.4 to 464 keV/microns were produced at the Lawrence Berkeley Laboratory BEVALAC.
View Article and Find Full Text PDFLenses of mice irradiated with 250 MeV protons, 670 MeV/amu 20Ne, 600 MeV/amu 56Fe, 350 MeV/amu 56Fe, 600 MeV/amu 93Nb or 593 MeV/amu 139La ions were evaluated by analysing cytopathological indicators which have been implicated in the cataractogenic process. The LETs ranged from 0.39 to 953 keV/microns and the fluences from 1.
View Article and Find Full Text PDFThis report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns.
View Article and Find Full Text PDF