Publications by authors named "E Kurant"

The elimination of superfluous neurons via apoptosis and subsequent glial phagocytosis is crucial for the development of the central nervous system (CNS). In Drosophila, two glial phagocytic receptors, six-microns-under (SIMU) and Draper, mediate the phagocytosis of apoptotic neurons during embryogenesis. However, in simu;draper double-mutant embryos, some apoptotic neurons are still engulfed by the glia, suggesting the involvement of additional receptors.

View Article and Find Full Text PDF

Glial phagocytosis of apoptotic neurons is crucial for development and proper function of the central nervous system. Relying on transmembrane receptors located on their protrusions, phagocytic glia recognize and engulf apoptotic debris. Like vertebrate microglia, Drosophila phagocytic glial cells form an elaborate network in the developing brain to reach and remove apoptotic neurons.

View Article and Find Full Text PDF

Phagoptosis is a frequently occurring nonautonomous cell death pathway in which phagocytes eliminate viable cells. While it is thought that phosphatidylserine (PS) "eat-me" signals on target cells initiate the process, the precise sequence of events is largely unknown. Here, we show that in testes, progenitor germ cells are spontaneously removed by neighboring cyst cells through phagoptosis.

View Article and Find Full Text PDF

Programmed cell death plays a fundamental role in development and tissue homeostasis. Professional and non-professional phagocytes achieve the proper recognition, uptake, and degradation of apoptotic cells, a process called efferocytosis. Failure in efferocytosis leads to autoimmune and neurodegenerative diseases.

View Article and Find Full Text PDF

Skp1, a component of the ubiquitin E3 ligases, was found to be decreased in the brains of sporadic Parkinson's disease (PD) patients, and its overexpression prevented death of murine neurons in culture. Here we expose the neuroprotective role of the Drosophila skp1 homolog, skpA, in the adult brain. Neuronal knockdown of skpA leads to accumulation of ubiquitinated protein aggregates and loss of dopaminergic neurons accompanied by motor dysfunction and reduced lifespan.

View Article and Find Full Text PDF