Publications by authors named "E Kulczykowska"

Article Synopsis
  • The study focuses on the European flounder, highlighting the lack of comprehensive transcriptome data for this economically important species.
  • Researchers generated RNA-Seq data from ten organs of female flounders using Next Generation Sequencing, resulting in 500 million sequencing reads and 61,000 reliable contigs.
  • The assembled transcriptome, which demonstrates high completeness according to BUSCOs statistics, can be utilized in various research areas such as biology, aquaculture, and toxicology.
View Article and Find Full Text PDF

The classic melatonin biosynthesis pathway (Mel; N-acetyl-5-methoxytryptamine) involves two consecutive enzymatic steps that are decisive in hormone production: conversion of serotonin (5-hydroxytryptamine; 5-HT) to N-acetylserotonin (NAS) and the methylation of the last compound to Mel. This pathway requires the activity of the enzymes: the first is of the category of N-acetyltransferases (AANAT, SNAT, or NAT) and the second is N-acetylserotonin O-methyltransferase (ASMT; also known as HIOMT). However, quite recently, new information has been provided on the possibility of an alternative Mel synthesis pathway; it would include a two-step action by these enzymes, but in reverse order, where ASMT (or ASMTL, the enzyme related to ASMT) methylates 5-HT to 5-methoxytryptamine (5-MT), and then the last compound is acetylated by an enzyme of the category of N-acetyltransferases to Mel.

View Article and Find Full Text PDF

The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream () as a model.

View Article and Find Full Text PDF

In fish, the skin is directly exposed to multiple environmental stressors and provides the first line of defense against harmful external factors. It turned out that cortisol and melatonin (Mel) are involved in fish cutaneous stress response system (CSRS) similar to mammalian. This study investigates the mode of action of CSRS in two teleost species of different biology and skin characteristics, the three-spined stickleback and the European flounder, after exposure to oxidative stress induced by a potassium dichromate solution.

View Article and Find Full Text PDF

The skin being a passive biological barrier that defends the organism against harmful external factors is also a site of action of the system responding to stress. It appears that melatonin (Mel) and its biologically active metabolite AFMK (N1-acetyl-N2-formyl-5-methoxykynuramine), both known as effective antioxidants, together with cortisol, set up a local (cutaneous) stress response system (CSRS) of fish, similar to that of mammals. Herein we comment on recent studies on CSRS in fish and show the response of three-spined stickleback skin to oxidative stress induced by potassium dichromate.

View Article and Find Full Text PDF