Publications by authors named "E Kostenis"

Adhesion G protein-coupled receptors (aGPCRs) are expressed in all organs and are involved in various mechanobiological processes. They are heavily alternatively spliced, forecasting an extraordinary molecular structural diversity. Here, we uncovered the existence of unconventional single-transmembrane (1TM)-containing ADGRL/Cirl proteins devoid of the conventional GPCR layout (i.

View Article and Find Full Text PDF

The discovery of Toll-like receptors (TLRs) represented a significant breakthrough that paved the way for the study of host-pathogen interactions in innate immunity. However, there are still major gaps in understanding TLR function, especially regarding the early dynamics of downstream TLR pathways. Here, we present a label-free optical biosensor-based assay as a method for detecting TLR activation in a native and label-free environment and defining the dynamics of TLR pathway activation.

View Article and Find Full Text PDF
Article Synopsis
  • GPR17 is an orphan receptor linked to inflammatory diseases, particularly multiple sclerosis, and its antagonists may help promote remyelination.
  • This study introduces a new category of GPR17 antagonists derived from an anthranilic acid scaffold, with their effectiveness tested in several biological assays.
  • The most effective compounds identified were PSB-22269 and PSB-24040, with specific binding characteristics that could aid future drug development targeting GPR17.
View Article and Find Full Text PDF

A long-held tenet in inositol-lipid signaling is that cleavage of membrane phosphoinositides by phospholipase Cβ (PLCβ) isozymes to increase cytosolic Ca in living cells is exclusive to Gq- and Gi-sensitive G protein-coupled receptors (GPCRs). Here we extend this central tenet and show that Gs-GPCRs also partake in inositol-lipid signaling and thereby increase cytosolic Ca. By combining CRISPR/Cas9 genome editing to delete Gα, the adenylyl cyclase isoforms 3 and 6, or the PLCβ1-4 isozymes, with pharmacological and genetic inhibition of Gq and G11, we pin down Gs-derived Gβγ as driver of a PLCβ2/3-mediated cytosolic Ca release module.

View Article and Find Full Text PDF