Unlabelled: Interferons (IFNs) are cytokines with potent antineoplastic and antiviral properties. IFNα has significant clinical activity in the treatment of myeloproliferative neoplasms (MPN), but the precise mechanisms by which it acts are not well understood. Here, we demonstrate that chromatin assembly factor 1 subunit B (CHAF1B), an Unc-51-like kinase 1 (ULK1)-interactive protein in the nuclear compartment of malignant cells, is overexpressed in patients with MPN.
View Article and Find Full Text PDFInterferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK.
View Article and Find Full Text PDFThe MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells.
View Article and Find Full Text PDFWe provide evidence that a member of the human Schlafen (SLFN) family of proteins, SLFN5, is overexpressed in human pancreatic ductal adenocarcinoma (PDAC). Targeted deletion of SLFN5 results in decreased PDAC cell proliferation and suppresses PDAC tumorigenesis in in vivo PDAC models. Importantly, high expression levels of SLFN5 correlate with worse outcomes in PDAC patients, implicating SLFN5 in the pathophysiology of PDAC that leads to poor outcomes.
View Article and Find Full Text PDF