Necessity of having simple selective and robust methods for the analysis of environmentally relevant chemicals stimulates the development of new approaches to material preparation. Electrochemical sensing using electroactive substrates has proved efficient in the analysis of a wide range of pesticides and is widely used as a routine analytical method. Recently, mixed oxides showed promising electrocatalytic activity toward hazardous substrates.
View Article and Find Full Text PDFStable, water-soluble titanium complexed with mandelic acid was used as a precursor for titanium phosphorus double oxide obtained in hydrothermal conditions in the presence of phosphoric acid. Surprisingly, hydrolysis of organic complexes provided a microstructured sphere with narrow size distribution, low aggregation and a small fraction of morphological irregularities. Obtained microspheres had a complex structure comprised of flakes, whose size could be manipulated with temperature conditions.
View Article and Find Full Text PDFConsidering the vast importance of peptide and protein interactions with inorganic surfaces, probing hydrogen bonding during their adsorption on metal oxide surfaces is a relevant task that could shed light on the essential features of their interplay. This work is devoted to studying the dipeptides' adsorption on anatase nanoparticles (ANs) in light and heavy water to reveal differences arising upon the change of the major hydrogen bonding carrier. Thermodynamic study of six native dipeptides' adsorption on ANs in both media shows a strong influence of the solvent on the Gibbs free energy and the effect of side-chain mobile protons on the entropy of the process.
View Article and Find Full Text PDFFundamentals of inorganic-organic interactions are critically important in the discovery and development of novel biointerfaces amenable for utilization in biotechnology and medicine. Recent studies indicate that proteins interact with surfaces through limited adsorption sites. Protein fragments such as amino acids and peptides can be used for interaction modeling between complex biological macromolecules and inorganic surfaces.
View Article and Find Full Text PDFThe affinity of biomolecules, such as peptides and proteins, with inorganic surfaces, is a fundamental topic in biotechnology and bionanotechnology. Amino acids are often used as "model" bits of peptides or proteins for studying their properties in different environments and/or developing functional surfaces. Despite great demand for knowledge about amino acid interactions with metal oxide surfaces, studies on the issue represent a fragmentary picture.
View Article and Find Full Text PDF