Publications by authors named "E Kokkonen"

The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts - zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors.

View Article and Find Full Text PDF

This work employs ambient pressure X-ray photoelectron spectroscopy (APXPS) to delve into the atomic and electronic transformations of a core-shell Ni@NiO/NiCO photocatalyst - a model system for visible light active plasmonic photocatalysts used in water splitting for hydrogen production. This catalyst exhibits reversible structural and electronic changes in response to water vapor and solar simulator light. In this study, APXPS spectra were obtained under a 1 millibar water vapor pressure, employing a solar simulator with an AM 1.

View Article and Find Full Text PDF

The Ambient-Pressure X-ray Photoelectron Spectroscopy (APXPS) endstation at the SPECIES beamline at MAX IV Laboratory has been improved. The latest upgrades help in performing photo-assisted experiments under operando conditions in the mbar pressure range using gas and vapour mixtures whilst also reducing beam damage to the sample caused by X-ray irradiation. This article reports on endstation upgrades for APXPS and examples of scientific cases of in situ photocatalysis, photoreduction and photo-assisted atomic layer deposition (photo-ALD).

View Article and Find Full Text PDF

Ambient pressure x-ray photoelectron spectroscopy (APXPS) can provide a compelling platform for studying an analyte's oxidation and reduction reactions in solutions. This paper presents proof-of-principle operando measurements of a model organometallic complex, iron hexacyanide, in an aqueous solution using the dip-and-pull technique. The data demonstrates that the electrochemically active liquid meniscuses on the working electrodes can undergo controlled redox reactions which were observed using APXPS.

View Article and Find Full Text PDF

The synthesis of high-value fuels and plastics starting from small hydrocarbon molecules plays a central role in the current transition towards renewable energy. However, the detailed mechanisms driving the growth of hydrocarbon chains remain to a large extent unknown. Here we investigated the formation of hydrocarbon chains resulting from acetylene polymerization on a Ni(111) model catalyst surface.

View Article and Find Full Text PDF