Publications by authors named "E Kokkinos"

Altered mood and psychiatric disorders are commonly associated with chronic pain conditions; however, brain mechanisms linking pain and comorbid clinical depression are still largely unknown. In this study, we aimed to identify whether key genes/cellular mechanisms underlie susceptibility/resiliency to development of depressive-like behaviors during chronic pain state. Genome-wide RNA-seq analysis was used to examine the transcriptomic profile of the hippocampus, a limbic brain region that regulates mood and stress responses, from male rats exposed to chronic inflammatory pain.

View Article and Find Full Text PDF

A magnetic nanocomposite, consisting of FeO nanoparticles embedded into a Mg/Al layered double hydroxide (LDH) matrix, was developed for cancer multimodal therapy, based on the combination of local magnetic hyperthermia and thermally induced drug delivery. The synthesis procedure involves the sequential hydrolysis of iron salts (Fe, Fe) and Mg/Al nitrates in a carbonate-rich mild alkaline environment followed by the loading of 5-fluorouracil, an anionic anticancer drug, in the interlayer LDH space. Magnetite nanoparticles with a diameter around 30 nm, dispersed in water, constitute the hyperthermia-active phase able to generate a specific loss of power of around 500 W/g-Fe in an alternating current (AC) magnetic field of 24 kA/m and 300 kHz as determined by AC magnetometry and calorimetric measurements.

View Article and Find Full Text PDF

The surface configuration of tetravalent manganese feroxyhyte (TMFx) was appropriately modified to achieve higher negative surface charge density and, hence, to improve its efficiency for the removal of dissolved Cd and Pb mostly cationic species from water at pH values commonly found in surface or ground waters. This was succeeded by the favorable engagement of Ca cations onto the surface of a mixed Mn-Fe oxy-hydroxide adsorbent during the preparation step, imitating an ion-exchange mechanism between H and Ca; therefore, the number of available negatively-charged adsorption sites was increased. Particularly, the calcium coverage can increase the deprotonated surface oxygen atoms, which can act as adsorption centers, as well as maintain them during the subsequent drying procedure.

View Article and Find Full Text PDF

This study is aiming to investigate tetravalent manganese feroxyhyte (TMFx) adsorption efficiency in removing heavy metals. The motivation of this study was the fact that TMFx is a highly negatively charged nanostructure material and that the metals Cd, Hg, and Ni were characterized as priority pollutants for drinking water. TMFx was evaluated through batch and continuous flow experiments in National Sanitation Foundation (NSF) water matrix which simulated the physicochemical characteristics of natural water.

View Article and Find Full Text PDF

This study demonstrates an optimization procedure for the development of an Hg-specified adsorbent able to comply with the regulation limit for drinking water of 1μg/L. On this purpose, the synthesis of Mn(IV)-feroxyhyte was modified to achieve high negative charge density by combining alkaline and extreme oxidizing conditions. In particular, precipitation of FeSO at pH9 and excess of KMnO follows a very fast nucleation step providing a product with very small nanocrystal size (1-2nm), high specific surface area (300m/g) and maximum negative charge density (1.

View Article and Find Full Text PDF