Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade.
View Article and Find Full Text PDFThe diversification of the reptile venom system has been an area of major research but of great controversy. In this review we examine the historical and modern-day efforts of all aspects of the venom system including dentition, glands and secreted toxins and highlight areas of future research opportunities. We use multidisciplinary techniques, including magnetic resonance imaging of venom glands through to molecular phylogenetic reconstruction of toxin evolutionary history, to illustrate the diversity within this integrated weapons system and map the timing of toxin recruitment events over the toxicoferan organismal evolutionary tree.
View Article and Find Full Text PDFThe predatory ecology of Varanus komodoensis (Komodo Dragon) has been a subject of long-standing interest and considerable conjecture. Here, we investigate the roles and potential interplay between cranial mechanics, toxic bacteria, and venom. Our analyses point to the presence of a sophisticated combined-arsenal killing apparatus.
View Article and Find Full Text PDFMany advanced snakes use fangs-specialized teeth associated with a venom gland-to introduce venom into prey or attacker. Various front- and rear-fanged groups are recognized, according to whether their fangs are positioned anterior (for example cobras and vipers) or posterior (for example grass snakes) in the upper jaw. A fundamental controversy in snake evolution is whether or not front and rear fangs share the same evolutionary and developmental origin.
View Article and Find Full Text PDFAmong extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system.
View Article and Find Full Text PDF