Adv Neural Inf Process Syst
December 2023
We present CELL-E 2, a novel bidirectional transformer that can generate images depicting protein subcellular localization from the amino acid sequences (and ). Protein localization is a challenging problem that requires integrating sequence and image information, which most existing methods ignore. CELL-E 2 extends the work of CELL-E, not only capturing the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but also being able to generate sequences from images, enabling protein design.
View Article and Find Full Text PDFAccurately predicting cellular activities of proteins based on their primary amino acid sequences would greatly improve our understanding of the proteome. In this paper, we present CELL-E, a text-to-image transformer model that generates 2D probability density images describing the spatial distribution of proteins within cells. Given an amino acid sequence and a reference image for cell or nucleus morphology, CELL-E predicts a more refined representation of protein localization, as opposed to previous methods that rely on pre-defined, discrete class annotations of protein localization to subcellular compartments.
View Article and Find Full Text PDFLuminescence arising from -decay of radiotracers has garnered much interest recently as a viable in-vivo imaging technique. The emitted Cerenkov radiation can be directly detected by high sensitivity cameras or used to excite highly efficient fluorescent dyes. Here, we investigate the enhancement of visible and infrared emission driven by -decay of radioisotopes in the presence of a hyperbolic nanocavity.
View Article and Find Full Text PDFDistortion of nominally planar phthalocyanine macrocycles affects the excited state dynamics in that most of the excited-state energy decays through internal conversion. A click-type annulation reaction on a perfluorophthalocyanine platform appending a seven-membered ring to the β-positions on one or more of the isoindoles distorts the macrocycle and modulates solubility. The distorted derivative enables photoacoustic imaging, photothermal effects, and strong surface-enhanced resonance Raman signals.
View Article and Find Full Text PDFNanoparticles labeled with radiometals enable whole-body nuclear imaging and therapy. Though chelating agents are commonly used to radiolabel biomolecules, nanoparticles offer the advantage of attaching a radiometal directly to the nanoparticle itself without the need of such agents. We previously demonstrated that direct radiolabeling of silica nanoparticles with hard, oxophilic ions, such as the positron emitters zirconium-89 and gallium-68, is remarkably efficient.
View Article and Find Full Text PDF