Objectives: The goal of this study is to develop a novel drug delivery platform for the pH-responsive delivery of biofilm inhibitors as a potential avenue to prevent and treat dental caries.
Methods: Biofilm and growth inhibition assays were performed in polystyrene microtiter 96-well plates. Docking analysis was performed using the reported GtfB + HA5 co-crystal structure (PDB code: 8fg8) in SeeSAR 13.
Antibody therapeutics are limited in treating brain diseases due to poor blood-brain barrier (BBB) penetration. We have discovered that poly 2-methacryloyloxyethyl phosphorylcholine (PMPC), a biocompatible polymer, effectively facilitates BBB penetration via receptor-mediated transcytosis and have developed a PMPC-shell-based platform for brain delivery of therapeutic antibodies, termed nanocapsule. Yet, the platform results in functional loss of antibodies due to epitope masking by the PMPC polymer network, which necessitates the incorporation of a targeting moiety and degradable crosslinker to enable on-site antibody release.
View Article and Find Full Text PDFWe designed and synthesized analogues of a previously identified biofilm inhibitor to improve solubility, retain inhibitory activities, and to facilitate encapsulation into pH-responsive hydrogel microparticles. The optimized lead compound showed improved solubility of 120.09 μg/mL, inhibited biofilm with an IC value of 6.
View Article and Find Full Text PDFRadiolabeled drug nanocarriers that can be easily imaged positron emission tomography (PET) are highly significant as their outcome can be quantitatively PET-traced with high sensitivity. However, typical radiolabeling of most PET-guided theranostic vehicles utilizes modification with chelator ligands, which presents various challenges. In addition, unlike passive tumor targeting, specific targeting of drug delivery vehicles binding affinity to overexpressed cancer cell receptors is crucial to improve the theranostic delivery to tumors.
View Article and Find Full Text PDFAm J Transplant
April 2023
The loss of functional β-cell mass is a hallmark of type 1 diabetes. Islet transplantation represents a promising alternative approach, but immune-mediated graft destruction remains a major challenge. We sought to use islet encapsulation technologies to improve graft survival and function without systemic immunosuppression.
View Article and Find Full Text PDF