Publications by authors named "E Kaza"

Purpose: Defining a microscopic tumor infiltration boundary is critical to the success of radiation therapy. Currently, radiation oncologists use margins to geometrically expand the visible tumor for radiation treatment planning in soft tissue sarcomas (STS). Image-based models of tumor progression would be critical to personalize the treatment radiation field to the pattern of sarcoma spread.

View Article and Find Full Text PDF

Diffusion-weighted MRI (DW-MRI) is used to quantitatively characterize the microscopic structure of muscle through anisotropic water diffusion in soft tissue. Applications such as tumor propagation modeling require precise detection of muscle fiber orientation. That is, the direction along the fibers that coincides with the direction of the principal eigenvector of the diffusion tensor reconstructed from DW-MRI data.

View Article and Find Full Text PDF

Background: Newborns with critical congenital heart disease (CCHD) require specialized delivery room management, but varying experience and knowledge can reduce confidence and impact care.

Methods: A pre-delivery, structured huddle checklist was introduced, addressing team roles, expected physiology, and management plans. PDSA cycles incorporated guidelines and simulation-based education to improve confidence in specialized resuscitation strategies.

View Article and Find Full Text PDF

Background: Stereotactic MR-guided Adaptive Radiation Therapy (SMART) dose painting for hypoxia has potential to improve treatment outcomes, but clinical implementation on low-field MR-Linac faces substantial challenges due to dramatically lower signal-to-noise ratio (SNR) characteristics. While quantitative MRI and T mapping of hypoxia biomarkers show promise, T-to-noise ratio (TNR) optimization at low fields is paramount, particularly for the clinical implementation of oxygen-enhanced (OE)-MRI. The 3D Magnetization Prepared (2) Rapid Gradient Echo (MP2RAGE) sequence stands out for its ability to acquire homogeneous T-weighted contrast images with simultaneous T mapping.

View Article and Find Full Text PDF

AGuIX, a novel gadolinium-based nanoparticle, has been deployed in a pioneering double-blinded Phase II clinical trial aiming to assess its efficacy in enhancing radiotherapy for tumor treatment. This paper moves towards this goal by analyzing AGuIX uptake patterns in 23 patients. A phantom was designed to establish the relationship between AGuIX concentration and longitudinal ( ) relaxation.

View Article and Find Full Text PDF