Publications by authors named "E Kamio"

Covalent organic networks (CONs) are considered ideal for precise molecular separation compared with traditional polymer membranes because their pores have a sharp molecular weight cut-off and a robust structure. However, challenges remain with regard to tuning pores as a prerequisite for facile membrane fabrication to a defect-free layer. Herein, a highly conjugated amino-porphyrin is used and exploited its tunable stacking behavior to fabricate porphyrin-based polyamide CONs with ordered structures through interfacial polymerization with acyl chlorides.

View Article and Find Full Text PDF

A tough ion gel membrane containing a CO-philic ionic liquid, 1-ethyl-3-methylimidazolium tricyanomethanide ([Emim][C(CN)]), was developed, and its CO permeation properties were evaluated under humid conditions at elevated temperatures. Pebax 1657, which is a diblock copolymer composed of a polyamide block and a polyethylene oxide block, was used as the gel network of the ion gel membrane to prepare a tough ion gel with good ionic liquid-holding properties. The polyamide block formed a semicrystalline structure in [Emim][C(CN)] to toughen the ion gel membrane an energy dissipation mechanism.

View Article and Find Full Text PDF

Laminar membranes comprising graphene oxide (GO) and metal-organic framework (MOF) nanosheets benefit from the regular in-plane pores of MOF nanosheets and thus can support rapid water transport. However, the restacking and agglomeration of MOF nanosheets during typical vacuum filtration disturb the stacking of GO sheets, thus deteriorating the membrane selectivity. Therefore, to fabricate highly permeable MOF nanosheets/reduced GO (rGO) membranes, a two-step method is applied.

View Article and Find Full Text PDF

Constructing crosslinked polymer networks reversible interactions is a promising approach to recover the mechanical strength of damaged gels. In addition, by designing effective reversible crosslinks, the mechanical strength of the gel can be enhanced through energy dissipation based on the destruction of the crosslinks by an applied force. In this study, we introduced zeolitic imidazole framework-8 nanoparticles (ZIF-8 NPs), which acted as multifunctional crosslinkers, to provide multipoint coordination bonding with a poly(,-dimethylacrylamide)-based polymer network in a gel containing an ionic liquid.

View Article and Find Full Text PDF
Article Synopsis
  • Forward osmosis (FO) aims to improve energy-efficient seawater desalination, focusing on effective water recovery and regeneration of draw solutions (DS).
  • Recent developments include using thermo-responsive ionic liquids (ILs) for better recovery, particularly employing high-temperature reverse osmosis (RO) methods.
  • In this study, a specific IL-based DS was treated at temperatures above its critical point, enhancing osmotic pressure and enabling substantial water recovery until reaching concentrated levels.
View Article and Find Full Text PDF