Objective: Myeloid leukemia is a stem cell disease with high mortality due to the challenges of high-dose treatments and side effects. Innovative nanoparticle drug delivery systems are being explored to enhance efficacy and tissue-targeted therapy. This study investigates the potential of Bentonite (BNT)-based nanoparticles (NPs) as drug carriers for azacitidine (AZA) in treating THP-1 and K562 myeloid leukemia (AML) cell lines, aiming to improve drug stability, bioavailability, and therapeutic efficacy while ensuring controlled release.
View Article and Find Full Text PDFBackground: Biomaterials used in fracture healing hold a significant place in orthopedics. This study aimed to develop biomaterials coated with hydroxyapatite (HA), boric acid (BA), and magnesium (Mg) and investigate their effects on fracture healing.
Methods: Sixty female Wistar Albino rats were included in the study.
Background Local antibiotic applications have been used in chronic osteomyelitis and have been defined as an adjunctive treatment method. Biodegradable materials are also used for the same purpose by adding antibiotics. The fact that it does not require additional surgery to be removed is an important advantage.
View Article and Find Full Text PDFRed blood cell (RBC) deformability is modulated by the phosphorylation status of the cytoskeletal proteins that regulate the interactions of integral transmembrane complexes. Proteomic studies have revealed that receptor-related signaling molecules and regulatory proteins involved in signaling cascades are present in RBCs. In this study, we investigated the roles of the cAMP signaling mechanism in modulating shear-induced RBC deformability and examined changes in the phosphorylation of the RBC proteome.
View Article and Find Full Text PDFAging has been characterized with the accumulation of oxidized proteins, as a consequence of progressive decline in proteostasis capacity. Among others, proteasomal system is an efficient protein turnover complex to avoid aggregation of oxidized proteins. Heat shock protein 70 (HSP70) is another critical player that is involved in some key processes including the correct folding of misfolded proteins and targeting aggregated proteins to the proteasome for rapid degradation.
View Article and Find Full Text PDF