Dinitrosyl iron complexes (DNICs) are important physiological derivatives of nitric oxide. These complexes have a wide range of biological activities, with antioxidant and antiradical ones being of particular interest and importance. We studied the interaction between DNICs associated with the dipeptide L-carnosine or serum albumin and prooxidants under conditions mimicking oxidative stress.
View Article and Find Full Text PDFCarbonyl stress occurs when reactive carbonyl compounds (RCC), such as reducing sugars, dicarbonyls etc., accumulate in the organism. The interaction of RCC carbonyl groups with amino groups of molecules is called the Maillard reaction.
View Article and Find Full Text PDFThe antioxidant effect of dinitrosyl iron complexes (DNICs) was studied in various model systems. DNICs with glutathione ligands effectively inhibited Cu2+-induced peroxidation of low density lipoproteins (LDL). The antioxidant effect of DNICs with phosphate ligands and free reduced glutathione (GSH) was less pronounced.
View Article and Find Full Text PDFWe studied the effect of dinitrosyl-iron complexes with N-acetyl-L-cysteine as a thiol-containing ligand (DNIC-Acc) after transdermal administration to rats. Electron paramagnetic resonance spectroscopy with a lipophilic NO spin trap (a complex of iron and diethyldithiocarbamate ions) showed that DNIC-Acc administration significantly increased the total level of NO in the lung and liver tissues of the animal, which was accompanied by a slight decrease in the mean BP (<10%).
View Article and Find Full Text PDFHypochlorous acid (HOCl), one of the major precursors of free radicals in body cells and tissues, is endowed with strong prooxidant activity. In living systems, dinitrosyl iron complexes (DNIC) with glutathione ligands play the role of nitric oxide donors and possess a broad range of biological activities. At micromolar concentrations, DNIC effectively inhibit HOCl-induced lysis of red blood cells (RBCs) and manifest an ability to scavenge alkoxyl and alkylperoxyl radicals generated in the reaction of HOCl with -butyl hydroperoxide.
View Article and Find Full Text PDF