Objective: To evaluate the impact of sterilization methods on the structural integrity and antimicrobial properties of graphene nanocoating on titanium (GN).
Methods: GN was transferred to titanium using wet (WT) or dry transfer (DT) techniques and sterilized using an autoclave (AC), glutaraldehyde (GA), or ethylene oxide (EtO). The GN structure was characterized using Raman spectroscopy before and after sterilization.
Titanium implants present 2 major drawbacks-namely, the long time needed for osseointegration and the lack of inherent antimicrobial properties. Surface modifications and coatings to improve biomaterials can lose their integrity and biological potential when exposed to stressful microenvironments. Graphene nanocoating (GN) can be deposited onto actual-size dental and orthopedic implants.
View Article and Find Full Text PDFThe identification of metal ions and particles in the vicinity of failed implants has raised the concern that biomedical titanium alloys undergo corrosion in healthy and infected tissues. Various surface modifications and coatings have been investigated to prevent the deterioration and biocorrosion of titanium alloys but so far with limited success. Graphene is a cytocompatible atom-thick film made of carbon atoms.
View Article and Find Full Text PDFObjective: Graphene and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO), are 2D carbon-based materials with remarkable physical, chemical and biological properties. Graphene sheets have high specific surface area and mechanical strength. Moreover, they have been shown to influence the differentiation of stem cells and to improve properties of biomaterials.
View Article and Find Full Text PDFHeparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer.
View Article and Find Full Text PDF