The Earth's magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock.
View Article and Find Full Text PDFJ Geophys Res Space Phys
October 2022
Dropout events are dramatic decreases in radiation belt electron populations that can occur in as little as 30 minutes. Loss to magnetopause due to a combination of magnetopause shadowing and outward radial transport plays a significant role in these events. We examine the dropout of relativistic electron populations during the October 2012 geomagnetic storm using simulated electron phase space density, evaluating the contribution of different processes to losses across the magnetopause.
View Article and Find Full Text PDFJ Geophys Res Space Phys
November 2021
One of the grand challenges in heliophysics is the characterization of coronal mass ejection (CME) magnetic structure and evolution from eruption at the Sun through heliospheric propagation. At present, the main difficulties are related to the lack of direct measurements of the coronal magnetic fields and the lack of 3D in-situ measurements of the CME body in interplanetary space. Nevertheless, the evolution of a CME magnetic structure can be followed using a combination of multi-point remote-sensing observations and multi-spacecraft in-situ measurements as well as modeling.
View Article and Find Full Text PDFGeomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun.
View Article and Find Full Text PDFIn order to address the growing need for more accurate space-weather predictions, a new model named EUHFORIA (EUropean Heliospheric FORecasting Information Asset) was recently developed. We present the first results of the performance assessment for the solar-wind modeling with EUHFORIA and identify possible limitations of its present setup. Using the basic EUHFORIA 1.
View Article and Find Full Text PDF