The peripheral benzodiazepine receptor, implicated in the transport of cholesterol from the outer to the inner mitochondrial membrane, is predicted by hydropathy analysis to feature five membrane-spanning domains, with the amino terminus within the mitochondrial periplasm and the carboxyl terminus in the external cytoplasm. We have tested these structural predictions directly by immunodetection of c-Myc-tagged peripheral benzodiazepine receptor on intact yeast mitochondria and by specific labeling in yeast membranes of cysteine residues introduced by site-directed mutagenesis. The combined results support the model originally proposed with some minor but important modifications.
View Article and Find Full Text PDFThe peripheral type benzodiazepine receptor (PBR) binds benzodiazepines such as RO5-4864 and isoquinoline carboxamide derivatives such as PK11195. This receptor includes an Mr 18,000 isoquinoline-binding subunit predominantly located in mitochondrial mem- branes. This protein has been found to copurify with two other mitochondrial proteins, namely the outer membrane voltage-dependent anion channel (VDAC), also known as mitochondrial porin, and the inner membrane adenine nucleotide carrier.
View Article and Find Full Text PDFThe lethality induced by the overproduction in Escherichia coli of a heterologous protein was used to select bacterial mutants. In one of these, the mutation responsible was mapped to priB. We describe the isolation of this mutant, the sequencing of the mutated gene, and its in vivo effect on plasmid replication.
View Article and Find Full Text PDFWe have studied the export of two human proteins in the course of their production in Escherichia coli. The coding sequences of the granulocyte-macrophage colony-stimulating factor and of interleukin 13 were fused to those of two synthetic signal sequences to direct the human proteins to the bacterial periplasm. We found that the total amount of protein varies with the signal peptide-cytokine combination, as does the fraction of it that is soluble in a periplasmic extract.
View Article and Find Full Text PDFThe human peripheral-type benzodiazepine receptor (PBR) has been produced in Saccharomyces cerevisiae where it retains its pharmacological properties [Riond et al., Eur. J.
View Article and Find Full Text PDF