Publications by authors named "E Joachimiak"

Motile cilia are evolutionarily conserved organelles. In humans, multiciliated cells (MCCs), assembling several hundred motile cilia on their apical surface, are components of the monolayer epithelia lining lower and upper airways, brain ventricles, and parts of the reproductive tracts, the fallopian tube and uterus in females, and efferent ductules in males. The coordinated beating of cilia generates a force that enables a shift of the tubular fluid, particles, or cells along the surface of the ciliated epithelia.

View Article and Find Full Text PDF

Motile cilia are unique organelles with the ability to autonomously move. Force generated by beating cilia propels cells and moves fluids. The ciliary skeleton is made of peripheral doublet microtubules and a central pair (CP) with a distinct structure at the tip.

View Article and Find Full Text PDF

Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium.

View Article and Find Full Text PDF

Tubulin posttranslational modifications represent an important mechanism involved in the regulation of microtubule functions. The most widespread among them are detyrosination, α∆2-tubulin, and polyglutamylation. Here, we describe a family of tubulin-modifying enzymes composed of two closely related proteins, KIAA0895L and KIAA0895, which have tubulin metallocarboxypeptidase activity and thus were termed TMCP1 and TMCP2, respectively.

View Article and Find Full Text PDF

Compounds that disrupt microtubule dynamics, such as colchicine, paclitaxel, or Vinca alkaloids, have been broadly used in biological studies and have found application in clinical anticancer medications. However, their main disadvantage is the lack of specificity towards cancerous cells, leading to severe side effects. In this paper, we report the first synthesis of 12 new visible light photoswitchable colchicine-based microtubule inhibitors .

View Article and Find Full Text PDF