Publications by authors named "E Jaros"

Objective: To investigate whether an increasing load of β-amyloid and/or neuritic plaques influences the phenotype, and thus the clinical diagnostic accuracy, of dementia with Lewy bodies (DLB).

Methods: A series of 64 subjects with autopsy-proven DLB was studied. Last diagnosis before death was used to determine the clinical diagnostic accuracy of DLB in relation to Lewy body distribution and extent of Alzheimer β-amyloid and/or neuritic pathology.

View Article and Find Full Text PDF

Aims: Frontotemporal lobar degeneration (FTLD) and motor neurone disease are linked by the possession of a hexanucleotide repeat expansion in C9ORF72, and both show neuronal cytoplasmic inclusions within cerebellar and hippocampal neurones which are TDP-43 negative but immunoreactive for p62 and dipeptide repeat proteins (DPR), these being generated by a non-ATG RAN translation of the expanded region of the gene.

Methods: Twenty-two cases of FTLD from Newcastle were analysed for an expansion in C9ORF72 by repeat primed PCR and Southern blot. Detailed case note analysis was performed, and blinded retrospective clinical impressions were achieved by review of clinical histories.

View Article and Find Full Text PDF

Background: Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72--have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.

View Article and Find Full Text PDF

Background: Miller Fisher syndrome is a regional variant of Guillain-Barre syndrome with a characteristic clinical triad of ophthalmoplegia, areflexia and ataxia and occasionally distal limb sensory loss. 90% of patients have associated antibodies to the GQ1b ganglioside. The pathophysiology of antibody-mediated peripheral nerve impairment remains uncertain.

View Article and Find Full Text PDF

Mitochondrial defects within substantia nigra (SN) neurons are implicated in the pathogenesis of Parkinson's disease. SN neurons show increased mitochondrial defects, mitochondrial DNA deletion levels, and susceptibility to such dysfunction, although the role of mitochondria in neuronal degeneration remains uncertain. In this study, we addressed this important question by exploring changes within the mitochondria of SN neurons from patients with primary mitochondrial diseases to determine whether mitochondrial dysfunction leads directly to neuronal cell loss.

View Article and Find Full Text PDF