Corneal disease is the fourth leading cause of blindness. According to the World Health Organization, roughly 1.6 million people globally are blind as a result of this disease.
View Article and Find Full Text PDFMechanical strain is an important signal that influences the behavior and properties of cells in a wide variety of tissues. Physiologically similar mechanical strain can revert cultured cells to a more normal phenotype. Here, we have demonstrated that 3% equibiaxial (EB) and uniaxial strains confer favorable protein expression in cultured rabbit corneal fibroblasts (RCFs), with approximately 35% and 65% reduction in expression of α-smooth muscle actin (α-SMA), respectively.
View Article and Find Full Text PDFCorneal blindness is a significant problem treated primarily by corneal transplants. Donor tissue supply is low, creating a growing need for an alternative. A tissue-engineered cornea made from patient-derived cells and biopolymer scaffold materials would be widely accessible to all patients and would alleviate the need for donor sources.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
The cornea is responsible for functional optical activity of the mammalian eye, as it must remain transparent in order to focus light onto the retina. Corneal disease is the second leading cause worldwide of vision loss [1]. Human donor tissue transplantation in the cornea is associated with problems such as immunorejection and recurring graft failures [1].
View Article and Find Full Text PDFA viable tissue-engineered corneal replacement needs to be transparent and mechanically resilient. One necessary element for achieving this level of functionality is a scaffolding material that minimizes backscattered light, supports cellular growth, and maintains the transparent cellular phenotype. We hypothesize that the best scaffolding material will mimic the microenvironment of the natural corneal extracellular matrix (ECM).
View Article and Find Full Text PDF