Publications by authors named "E J Mock"

Article Synopsis
  • This study introduces a computational framework to accurately calculate frequency-dependent NMR dipole-dipole relaxation rates for spin 1/2 nuclei using Molecular Dynamics simulations, addressing common issues like finite-size effects.
  • The method corrects for distortions caused by fixed distance sampling cutoffs and periodic boundary conditions, enhancing the reliability of the relaxation rate predictions across a wide frequency range.
  • Additionally, the approach applies the theory of Hwang and Freed to assess the effects of sampling conditions, and validates its effectiveness by computing NMR relaxation rates of 1H nuclei in liquid water, revealing potential underestimation of intermolecular contributions in previous research.
View Article and Find Full Text PDF

Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene have been identified as one of the most common genetic causes of Parkinson's disease (PD). The LRRK2 PD-associated mutations LRRK2G2019S and LRRK2R1441C, located in the kinase domain and in the ROC-COR domain, respectively, have been demonstrated to impair mitochondrial function. Here, we sought to further our understanding of mitochondrial health and mitophagy by integrating data from LRRK2R1441C rat primary cortical and human induced pluripotent stem cell-derived dopamine (iPSC-DA) neuronal cultures as models of PD.

View Article and Find Full Text PDF

N-Acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is regarded as the principal enzyme that generates N-acylethanolamines (NAEs), a family of signaling lipids that includes the endocannabinoid anandamide. To investigate the biological function and biosynthesis of NAEs, we sought to develop potent NAPE-PLD inhibitors. To this aim, we utilized a high-throughput screening-compatible NAPE-PLD activity assay, which uses the fluorescence-quenched substrate PED6.

View Article and Find Full Text PDF

N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB and CB receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied.

View Article and Find Full Text PDF