Cyp2c70-deficient mice have a human-like bile acid (BA) composition due to their inability to convert chenodeoxycholic acid (CDCA) into rodent-specific muricholic acids (MCAs). However, the hydrophobic BA composition in these animals is associated with liver pathology. Although Cyp2c70-ablation has been shown to alter gut microbiome composition, the impact of gut bacteria on liver pathology in Cyp2c70-/- mice remains to be established.
View Article and Find Full Text PDFBile acids (BAs) and their signaling pathways have been identified as therapeutic targets for liver and metabolic diseases. We generated (KO) mice that were not able to convert chenodeoxycholic acid into rodent-specific muricholic acids (MCAs) and, hence, possessed a more hydrophobic, human-like BA pool. Recently, we have shown that KO mice display cholangiopathic features with the development of liver fibrosis.
View Article and Find Full Text PDFBile acids and their signaling pathways are increasingly recognized as potential therapeutic targets for cholestatic and metabolic liver diseases. This review summarizes new insights in bile acid physiology, focusing on regulatory roles of bile acids in the control of immune regulation and on effects of pharmacological modulators of bile acid signaling pathways in human liver disease. Recent mouse studies have highlighted the importance of the interactions between bile acids and gut microbiome.
View Article and Find Full Text PDFBile acids (BAs) facilitate intestinal absorption of lipid-soluble nutrients and modulate various metabolic pathways through the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5. These receptors are targets for therapy in cholestatic and metabolic diseases. However, dissimilarities in BA metabolism between humans and mice complicate translation of preclinical data.
View Article and Find Full Text PDF