Publications by authors named "E J M Baltussen"

Diffuse reflectance spectroscopy can be used in colorectal cancer surgery for tissue classification. The main challenge in the classification task is to separate healthy colorectal wall from tumor tissue. In this study, four normalization techniques, four feature extraction methods and five classifiers are applied to nine datasets, to obtain the optimal method to separate spectra measured on healthy colorectal wall from spectra measured on tumor tissue.

View Article and Find Full Text PDF

Background And Objectives: In patients with rectal cancer who received neoadjuvant (chemo)radiotherapy, fibrosis is induced in and around the tumor area. As tumors and fibrosis have similar visual and tactile feedback, they are hard to distinguish during surgery. To prevent positive resection margins during surgery and spare healthy tissue, it would be of great benefit to have a real-time tissue classification technology that can be used in vivo.

View Article and Find Full Text PDF

Background: In colorectal cancer surgery there is a delicate balance between complete removal of the tumor and sparing as much healthy tissue as possible. Especially in rectal cancer, intraoperative tissue recognition could be of great benefit in preventing positive resection margins and sparing as much healthy tissue as possible. To better guide the surgeon, we evaluated the accuracy of diffuse reflectance spectroscopy (DRS) for tissue characterization during colorectal cancer surgery and determined the added value of DRS when compared to clinical judgement.

View Article and Find Full Text PDF

Background And Objectives: There is a clinical need to assess the resection margins of tongue cancer specimens, intraoperatively. In the current ex vivo study, we evaluated the feasibility of hyperspectral diffuse reflectance imaging (HSI) for distinguishing tumor from the healthy tongue tissue.

Study Design/materials And Methods: Fresh surgical specimens (n = 14) of squamous cell carcinoma of the tongue were scanned with two hyperspectral cameras that cover the visible and near-infrared spectrum (400-1,700 nm).

View Article and Find Full Text PDF