Colloids Surf B Biointerfaces
November 2024
The discovery of a novel sphingolipid subclass, the (1-deoxy)sphingolipids, which lack the 1-hydroxy group, attracted considerable attention in the last decade, mainly due to their involvement in disease. They differed in their physico-chemical properties from the canonical (or 1-hydroxy) sphingolipids and they were more toxic when accumulated in cells, inducing neurodegeneration and other dysfunctions. (1-Deoxy)ceramides, (1-deoxy)dihydroceramides, and (1- deoxymethyl)dihydroceramides, the latter two containing a saturated sphingoid chain, have been studied in this work using differential scanning calorimetry, confocal fluorescence and atomic force microscopy, to evaluate their behavior in bilayers composed of mixtures of three or four lipids.
View Article and Find Full Text PDFTopological corner states have been used to develop topologically robust Fano-resonant systems immune to structural perturbations while preserving the ultra-sensitive profiles under external factors. In this work, we have extended the possibility of obtaining Fano-resonant systems by introducing type-II and type-III corner states with a large modal surface to this class of resonance. Through photonic lattices with low symmetry, such as C, it is easy to obtain type-II and type-III corner states due to the tailoring of long-range interactions.
View Article and Find Full Text PDF-maleimide-derivatized phospholipids are often used to facilitate protein anchoring to membranes. In autophagy studies, this is applied to the covalent binding of Atg8, an autophagy protein, to a phosphatidylethanolamine (PE) in the nascent autophagosome. However, the question remains on how closely the -maleimide PE derivative (PE-mal) mimicks the native PE in the bilayer.
View Article and Find Full Text PDFRecent studies have shown that higher-order topologies in photonic systems lead to a robust enhancement of light-matter interactions. Moreover, higher-order topological phases have been extended to systems even without a band gap, as in Dirac semimetals. In this work, we propose a procedure to simultaneously generate two distinctive higher-order topological phases with corner states that allow a double resonant effect.
View Article and Find Full Text PDF