The protein composition of the plasma membrane is rapidly remodeled in response to changes in nutrient availability or cellular stress. This occurs, in part, through the selective ubiquitylation and endocytosis of plasma membrane proteins, which in the yeast is mediated by the HECT E3 ubiquitin ligase Rsp5 and arrestin--related trafficking (ART) adaptors. Here, we provide evidence that the ART protein family members are composed of an arrestin fold with interspersed disordered loops.
View Article and Find Full Text PDFCovalent modification of proteins with ubiquitin dynamically regulates their function and fate. The ubiquitination of most plasma membrane proteins initiates endocytosis and ESCRT-mediated sorting to the lysosomal lumen for degradation. Powerful genetic approaches in the budding yeast Saccharomyces cerevisiae have been particularly instrumental in the discovery and elucidation of these molecular mechanisms, which are conserved in all eukaryotes.
View Article and Find Full Text PDFTargeted endocytosis of plasma membrane (PM) proteins allows cells to adjust their complement of membrane proteins to changing extracellular conditions. For a wide variety of PM proteins, initiation of endocytosis is triggered by ubiquitination. In yeast, arrestin-related trafficking adaptors (ARTs) enable a single ubiquitin ligase, Rsp5, to specifically and selectively target a wide range of PM proteins for ubiquitination and endocytosis.
View Article and Find Full Text PDFDuring hyperosmotic shock, Saccharomyces cerevisiae adjusts to physiological challenges, including large plasma membrane invaginations generated by rapid cell shrinkage. Calcineurin, the Ca(2+)/calmodulin-dependent phosphatase, is normally cytosolic but concentrates in puncta and at sites of polarized growth during intense osmotic stress; inhibition of calcineurin-activated gene expression suggests that restricting its access to substrates tunes calcineurin signaling specificity. Hyperosmotic shock promotes calcineurin binding to and dephosphorylation of the PI(4,5)P2 phosphatase synaptojanin/Inp53/Sjl3 and causes dramatic calcineurin-dependent reorganization of PI(4,5)P2-enriched membrane domains.
View Article and Find Full Text PDFRNA binding proteins (RBPs) are vital to the regulation of mRNA transcripts, and can alter mRNA localization, degradation, translation, and storage. Whi3 was originally identified in a screen for small cell size mutants, and has since been characterized as an RBP. The identification of Whi3-interacting mRNAs involved in mediating cellular responses to stress suggested that Whi3 might be involved in stress-responsive RNA processing.
View Article and Find Full Text PDF