Publications by authors named "E J Edwards"

Background: Neonatal and maternal mortality remains high in low- and middle-income countries (LMIC), especially in sub-Saharan Africa. Quality data collection is crucial to understand the magnitude of these problems and to measure the impact of interventions aimed at improving neonatal and maternal mortality. However, data collection in the low-income country setting, especially in rural areas, has been a challenge for researchers, policy makers, and public health officials.

View Article and Find Full Text PDF

The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.

View Article and Find Full Text PDF

Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C grasses, a high photosynthetic rate (A) may depend on higher vein density (D) and hydraulic conductance (K). However, the higher D of C grasses suggests a hydraulic surplus, given their reduced need for high K resulting from lower stomatal conductance (g).

View Article and Find Full Text PDF
Article Synopsis
  • Benzene degradation under anoxic conditions has been studied for over 25 years, but the activation mechanism remains unclear due to challenges in cultivating anaerobic benzene-degrading cultures.
  • Our lab has maintained a slow-growing methanogenic enrichment culture named ORM2, which is a unique benzene fermenter related to other known degraders, but it has a long doubling time and lag phase.
  • We created a FISH probe to visualize ORM2 cells, discovering they cluster with methanogens and may produce substances that promote aggregation; higher benzene concentrations seem to hinder this aggregation, shedding light on the community dynamics to improve ORM2's growth rate.
View Article and Find Full Text PDF